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Abstract. Series expansion data are matters of increasing importance for studying the directed
percolation problem and others which are not yet solved. In order to extrapolate series for
the percolation probability on the directed square lattice, Baxter and Guttmann proposed a
numerical method based on an assumption that the so-called correction terms are expressed as
rational functions of the Catalan numbers. We give a theorem that the coefficients of the series
are generally given as finite series of the ballot numbers, which proves the assumption by Baxter
and Guttmann as a corollary. The proof of the theorem gives a method to calculate correction
terms exactly, as demonstrated by calculating the first three correction terms explicitly. Although
the present work provides a mathematical basis for the extrapolation procedure, there are still
open problems concerning this procedure.

1. Introduction

Directed percolation (DP) on the square lattice, originally introduced as a simple
probabilistic model of a flow of fluid through a random media (Broadbent and Hammersley
1957), can be regarded as a simple model of a spread of influence-ifh dimensions
(Domany and Kinzel 1984, Kinzel 1985). It has been associated with a wide variety of
non-equilibrium lattice models such as the contact process (Harris 1974, Liggett 1985),
the branching annihilating random walk (Bramson and Gray 1985, Takayasu and Tretyakov
1992, Jensen 1993) and the ZGB model (&iffal 1986). It was conjectured that, if a model

with a scalar order parameter exhibits a continuous transition into a unique absorbing state,
the critical behaviour is generically of the DP type (Janssen 1981, Grassberger 1982). The
Reggeon field theory (Grassberger and de la Torre 1979, Cardy and Suger 1980) and the
damage spreading transition (Marties al 1991, Grassberger 1995) belong to this DP
universality class and there is no counterexample to this conjecture as yet (Dickman 1993,
Grassberger 1995).

Although the DP universality class seems to be very wide, no model in it is exactly
solved. The most reliable evaluation of critical exponents is given by numerical methods
using series expansion data for the original DP model. Baxter and Guttmann (1988)
calculated a 41 term series for the bond percolation probabiifyon the directed square
lattice. Jensen and Guttmann (1995) have extended the series from 41 terms to 54 terms.
It is very interesting to see that the conjecture that the critical exponent for the percolation
probability, 8, may be exactl 7—38 given by the former paper is denied by the latter one.
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Jensen and Guttmann (1995, 1996a) concluded that the critical exponents for the DP should
not be expected to be simple rational fractions. This conjecture is remarkable, since all the
exactly solved models in two dimensions have rational exponents. Quite recently Guttmann
and Enting (1996) proposed a numerical procedure that indicates whether or not a given
statistical mechanical system or a combinatorial problem is solved in the sense of being
expressed in terms ab-finite functions. It should be noted that their technique uses the
date of series expansions. Their analysis shows that the DP belongs to the ‘unsolvable’
class (Guttmann and Enting 1996, Guttmann 1996).

Now the series expansion data are matters of increasing importance to the study of the
DP and other unsolved models. We should, therefore, notice that Baxter and Guttmann
(1988) and Jensen and Guttmann (1995) have extended the series for the percolation
probability, P, on the directed square lattice based on an assumption. Here we briefly
explain their extrapolation procedure. L&, be the finite-lattice approximation foP
obtained by a lattice with a linear size Baxter and Guttmann (1988) calculat&y as
a power series of, which is the probability that each bond is closed, up:te- 29 and
observed that the differenc®, — P,.1, is of the order of;"*1. This observation led them
to define thecorrection terms{d, ;} as

Pn - Pn+l = l]n Zdn,lq[‘ (11)

=1

Using finite numerical datéd, ;}, they estimated the correction termis, as functions of

nforl =12 ...,12. The expressions are given as linear combinations of the Catalan
number
1 (2n
n = =123,... 1.2
¢ n+1 ( n > . (1.2

in which coefficients are polynomials af It was conjectured that the correction terms can

be generally expressed as rational functions of the Catalan numbers. They assumed that
their expressions fodl,,;, = 1,2, ...,12, are valid also for > 29 and, using (1.1), they
extended the series @t from the 29 terms to 29- 12 = 41 terms. Jensen and Guttmann
(1995) performed the same procedure to extrapolate the series from the directly calculated
39 terms to 54 terms.

Recently Bousquet-Elou (1996) proved formula (1.1) and exactly calculated, by using
a combinatorial method, the first two correction terris; andd, », which are the same
as those conjectured by Baxter and Guttmann. Inui and Katori (1996) obtained the same
results by another method. There has been, however, no theoretical support so far for the
conjecture thatl, ; can be generally expressed by rational functions of the Catalan numbers.

In the present paper we generalize the method reported in the previous paper (Inui and
Katori 1996) and give a mathematical basis for the extrapolation procedure for the first time.
We consider coefficients of the series expansion of the probability, which will be shortly
defined, and prove a theorem that they are expressed by a finite series of ballot numbers
{on )} (We call them theballot number representatio(BNR)). SincepP, =" _, P, and
cn = ay.1, the above mentioned conjecture @y is proved as a corollary of our theorem.

Our proof provides not only theoretical support for the extrapolation method, but also a
method to calculaté, ; exactly.

Baxter and Guttmann (1988) and Jensen and Guttmann (1995) reported many good
properties concerning the number of terms and the coefficients for the Catalan number
representations observed in their numerical data. Although the reason why the correction
terms can be expressed using the Catalan numbers is clarified by the present theorem, still
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we cannot explain these additional properties. We will also discuss these open problems
from the view point of the BNR.

The paper is organized as follows. In section 2, we define the probalsility,
which is expressed as a finite series. It is shown that the coeﬁic{eﬁﬁ}szmzw in
the series are given as numbers of bond configurations on a finite lattice which satisfy some
conditions. According to theluster numberc, which characterizes bond configurations,
af), is classified ag’), = > .., a'), .. We show thab®) =" _,a) . can be expressed

n,m,c*
using{a’’), ;} with ' < n ands’ < s. Itis noted tha{a'’), ,} are decoupled frorb{’),} and

n
they are given as solutions of difference equations. In section 3, the difference equations are
generally solved and a concept of the BNR is introduced to characterize the solutions. By
mathematical induction with respect ¢pwe prove that the serie{sf,f;q.l} has the BNR for
anys > 0. Hence, we conclude the main theorem that the series of coeffiq'téms} has
the BNR for anys > 0. In section 4, we exactly calcula(e,ﬂf}n} for s =1 and 2 and give
their explicit representations. In section 5, we discuss the relation between the coefficients
{a,gffn} and the correction termgi, ;}. Future problems are given in section 6. In order
to prove theorems and perform exact calculations, we need many combinatorial identities

associated with the ballot numbers. The derivations of them are given in appendices.

2. Difference equations for coefficients

We consider a down-pointing triangular region in the square lattice with a linear size
VO={(x,y)€Z?:x+y=even 0<y<n—1 —y<x <y} (2.1)

in which we assume that there is a bond between each pair of nearest-neighbouv &ites.
hasn(n — 1) bonds. We assume that each bond is either open with probapilityclosed
with probability g = 1 — p. We saythere is an open path frorxg, yo) to (x,, yo + r)
for r > 1, if there is a sequencey, yo), (x1, vo + 1), ..., (x., yo + r) of sites in Vn0 such
that for each 0< k < r — 1 the bond from(xy, yo + k) t0 (xx41, yo + k + 1) is open.
We regard two sites as connected if there is at least one open path between them. Let
P,., be the probability that the origin (0,0) is connected to exaetlgites on the top row
VO={(x,n—1) eV —(n—1) < x <n—1}. Inour previous paper (Inui and Katori
1996) we proved that it is given in the form,
2o ~ (n—=1)(n—2) ~
Pym = Pn +m6]" " Z a;?znp xqs (22)
s=0

wherea('), is the number of bond configurations &f such that exactly — m + s bonds
are closed and (0,0) is connected to exastlgites inV0. Here the statement that exactly
n —m + s bonds are closed means that othér 2n +m — s bonds are open. If we define
P, =) _, P, thenP, is a finite-lattice approximation for the percolation probabilfty

In order to give equations fon,(,f,)n, we introduce the following notations. For
1 < m < ny, let a trapeziumVy ., = V2 \ V2_, and B,,,, be the set of all bonds
between the nearest-neighbour pairs of sites which are b 1i.r,gz]. We defines,, ,, as
the set of all bond configurations oB,, ,,. The total number of bond configurations
in By, is 2rtz-b-m@=D " \We consider some special bond configurations which
satisfy a condition,C, and we write their total number afw € B,,,, : C}. Let
A, ={—-(n-1,—-n-1)+2,...,(n—1)—2, (n—1)} andY, be the set of all subsets of,.
For a setA € Y,, the cardinalityjA| denotes the number of sites includeddn If x, y € A
and |x — y| = 2, we say thatr and y are adjacent, a sequence of adjacent sites is called
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a cluster We write the number of clusters iA asc(A). For a given bond configuration
® € By,.., and a non-empty seB € Y,,, a set of sites in¥, which are connected with

at least one site irB is determined for each € {ni,n1 +1,...,n2}. We write it as
A,(A,, = B;w). Using these notations, the valug') is given asa’) = > a¥) .
with a*) = Y cer, lici=m.cccr=a{lw € By, : exactlyn —m + s bonds are closed and

A (A1 = {0}; w) = C}. Here lg is the indicator function of an evenf?, such that
1oy = 1if Q is satisfied and &; = 0 otherwise.
For C1 € Y,,, C2 € Y,,, define
F(An, = C2, Ay, = C1; As) = t{w € By, © exactly (nz2 — ny) — (|C2| — [Cal)
-+As bonds are closed4,,(A,, = C1; w) = Cy,

andc(A,(A,, = Ci; ) > 2V¥n € (n1+ 1, ...,np — 1}}. (2.3)
We define
flng, ma), (11, m); As) = D Y~ Lycyimmeco=1 LiColmma.c(Cr=1)
Cre¥,, Coe,
xF (A, = C2, Ay, = C1; As) (2.4)
and

g((nz, m2), (n1,m); As) = Y Y Leyempeco=nLicoimmccr>2)

C1€Yy, Cr€Yy,

X F(A,, = C2, A,, = C1; As). (2.5)
We introduce a difference operator for a double sefis,} as
D(ﬂnm) = ﬂn+1,m - (ﬁn,mfl + 2ﬁnm + ﬂn,erl)' (26)

We have the following lemma.
Lemma 2.1Let

a, =a, +by,  withbl), =3 al,  fors>0.  (27)
c=2
@) If m > n,a®) =a® ma=b" =0.
(i) For 1< m <n,
D@, ) = and b9, =0 28)

(iii) When 1< s <n and 1< m < n,

—1s
D@, =Y Z S f+Lm) = komyis —shal ., (2.9)

k=0 s'=0 m’

and

;_\

M"

—k
Z (n,m), (n —k —L,m'y;s —shal"_, ... (2.10)

S—

b —

nm —
k

§—

||
o

s'=0

Proof. By definition, P, ,, = 0 for m > n. Sincea), . > 0, andal), = > ., a)

n,m,c c=1%n,m,c’
(i) is concluded by (2.2). We have remarked thﬁﬁlm’l is given as a number of bond
configurations{w} in which exactly(n + 1) — m + s bonds are closed andi, 1(A; =
{0}; w)| = m, c(A,11(A1 = {0}; w)) = 1. In figure 1, we show three typical examples of
such bond configurations. Only open bonds and sites which are connedi@d(toarked
by full circles) are shown. We regard these marked sites as occupied sites and others as



Figure 1. Three typical examples of bond configurations. Shaded regions indicate animals.

vacant sites. Here we call the set of occupied sites and open bonds between them an animal.
Figure 1@) shows a case where there arehabes(clumps of vacant sites) nor closed bonds
inside of the animal, such an animal is said tocoenpact Bousquet-Mlou (1996) proved
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thata'", ,, = a'?, ,, ; = the number of compact animals of directed height1 and width
maty =n. If we use this identification, it is easy to confirm (ii) (Inui and Katori 1996).
Whens > 1, a' +1 .1 Is the number of non-compact animals with appropriate conditions.
Figure 1()) shows the case where the animal has four holes and many closed bonds in it.

We assume that there is a positive intedersuch that

c(A;/(A1=1{0}, w)) =2 forn—k+1<tr<n (2.11)
and

(A (A1 ={0} ) =1 |4y (A1 = {0} w)| = m". (2.12)

Assume that exactly(n +1) — (n — k)} — im —m’) + (s — s’) bonds are closed nwn k1]

It follows that exactly(n — k) — m’ + s’ bonds are closed WO_ Since we consider the
case (2.11)s —s' > {(n+1) — (n — k)} = k+ 1. Figure 1€) shows the case in which
c(A, (A1 = {0}; w)) = 1. Counting the number of such bond configurations gh{lé{gm’l
for s > 1. From (2.3) and (2.4), we have

;lel_zzzh vsren f((n+1m), (n—k,m');s —s)a' o

s’ k=1 m'

+ZZf((n+1 m), (n,m'); s —s"al'), | (2.13)

where the bond configurations such as figurk) X¢esp. €)) contribute to the first (resp.

second) summation on the RHS. Sinfén + 1, m), (n —k,m');s —s)=0ifs —s' <0

anda'’, ., =0if s’ <0, (2.13) is written as

z(f-ilml_zzzls ek (o 1Lm), (0 =k, m);s = sHal")

s'=0 k=1 m'

+ZZf((n+1m) (n,m');s — )nﬂ)ll

s'=0 m’

=Y f(n+1m), (n.m):0a),

s—1s—s'—1
+ Z Z Z fn+1,m)y,(n—k,m);s— S/)“,Si)k,m',r (2.14)

s'=0 k=0 m'
We can see that (Inui and Katori 1996)

1 ifm=m—-—1orm+1
f(m+1,m),(n,m);0 =12 if m"=m (2.15)
0 otherwise

and we obtain the first equation of (iii). The second equation of (iii) is also derived by the
same argument. O

The functionsf((n +1,m), m —k,m’);s —s’) andg((n,m), (n —k — 1L, m');s —s')
are polynomials with respect toa Appendix A proves the following lemma concerning the
degrees of these polynomials.

Lemma 2.2The functionsf ((n+1, m), m—k, m’); s—s’) andg((n, m), m—k—1,m’); s —
s’) are polynomials of: for m, k, m" ands — s’. Their degrees are at mast- s’.



Ballot number representation of the DP probability 2981
3. Ballot number representation

We introduce the following numbers with three indices.

B 2(n — 1) 2(n —1)

As usual we assume thé%) =0if M <0QorM > N. In particular,
2n—1 2n —1
Opm = 0pm1 = (n ) - (n ) . (32)
’ o m-1D+m-1 m=-1D+m+1
Remark. The number defined by

bym = nmy _(nm :w n+m (3.3)
’ m m—1 n+1 m

is called aballot number(Riordan 1979). Consider a ballot in which candiddtscoresy
votes and candidatB scoress votes witha > 8. The probability that, during the ballo
was always ahead df is given byb,_15/(*7") = (@ —B)/(@+B) (see the Ballot theorem,
for example, in Grimmett and Stirzaker 1992 p 77). We find tal, = byym—1.1-m, N
this present paper will simply call it the ballot number.

By equation (3.2), we find the following basic properties of the ballot number.

On—m = —CQu.m (3.4)

Ay =0 if |m| >n (3.5
and

D(apm) =0 (3.6)

where D(-) is the difference operator defined by (2.6).
As we putm = 1 in (3.2), it got reduced to the Catalan number,

1 (2
n — Up1 = 3.7
¢ Fn n+1<n> 3.7)

which appears in many combinatorial problems (Sloane 1973).
As shown in appendix B, we can give the following representation for double series

{Bum}-
Lemma 3.1If B,,, = 0 for m > n, then with a givemg > 1

no—1 n—no
,Bn,m = Z an—no-‘rl.m-H,Bno,lHr\ + Z Zan—(l-‘rno—l).m,wD(lgl-kno—l,w) (38)
t=—np+1 =1 w>1

forn > ng and 1< m < n.

Definition 3.2.Let A(n; d) be the set of linear combinations of the ballot numbless,, }
in the form

Z Cm’(n)an,m’ (39)
m'=1
where{C,(n)} are polynomials of: of at most degreée,
d
Cur() = Cpynt”. (3.10)
r=0

If B, € An —ng;d) Vn = ng, in which ng andd are independent of, we say that the
series{f,} has theA(n — ng; d)-BNR.
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We prove the following lemma in appendix C.

Lemma33let ()o=1and()y =1l +1D(I+2)...(l +k—1) for k > 1. For each
m,y,8 > 1andk > 0,

n—1
anfl,m,y(l)kal,(s € 'A(ns k) (311)
=1
Combining lemmas 3.1 and 3.3 gives the following.

Proposition 3.4.Assume thag,, ,, = 0 form > n. For eachn, if D(B,.,) € A(n—no+1; d)
with ng > 1, theng, ,, € A(n —no+ 1; d).

Now we prove the main theorem in the present paper.

Theorem 3.5For anys > 0, {a®) } has theA(n — s; 5)-BNR for eachm.

n,m

Proof. This theorem can be proved by mathematical induction with respect karst we
apply lemma 3.1 tc8,,.,, = a\-), ; With no = 1. By lemma 2.1(i) and (i)e{7, ,,; = dr.0,

n,m,1

wheres; ; denotes Kronecker's delta, and tha;g,)n,l =a® = a,, for L<m < n. This
means that), € A(n; 0). Assume tha’tz,(f/),.l e An—s';s) for0< s <s—1and

,m

1< m’ < n. From lemmas 2.1(jii) and 2.2, it follows th&@ (" ) € A(n —s + 1; s) and

n,m,l
b$), € A(n — s; s). Proposition 3.4 guarantees thgt) , € A(n —s +1;s) C A(n — 53 5)
and thusa$"), = a*) | +b%), € A(n — s;5). This completes the proof. O

4. Exact calculations fors =1 and 2

In section 3, we introduced a concept of thgn — ng; d)-BNR for series{g,}. In
definition 3.2, it should be noted that and d are independent of, while the range
of summation with respect tei’ in (3.9) depends om. This should be generalized as
follows for double serie$s, . }.

Definition 4.1.Let A(n, [m — to, m + 11]; d) be the set of linear combinations of the ballot
numbers{w, v} in the form

m-+ty

Z Cm,m’(n)an,m’ (41)

m'=m—ty

where{C,, ,»(n)} are the polynomials of of at most degreé;

d
Cm,m’ (n) = Z Cm,m’,rnr- (42)
r=0

If Bum € A(n — no, [m — to,m + 11]; d) Vn > ng, for eachm, in which no, o, 1, d are
independent ofi, we say that the double serigs, .} has thed(n —ng; [m —to, m +11]; d)-
BNR.

Theorem 3.5 guarantees thaf? } and{a‘® } have theA(n—1; 1) and A(n—2; 2)-BNR

for eachm. Exact calculation givés, however, the following remarkable results.
Theorem 4.2.

® {a,(l’l,)n} has theA(n, [m, m + 1]; 2)-BNR.

(i) {a{2,} has theA(n — 1, [m — 1, m + 3]; 4)-BNR.
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In this section, we demonstrate how these results are obtained using the formulae (2.9)
and (2.10) given in lemma 2.1 and lemma 3.1.

Before that, we give here an additional lemma. Although this is equivalent to the fact
thata!") =0 for s > (n — 1)(n — 2) as shown in (2.2), it will be useful to treat the first
term of (3.8).

Lemma 4.3 Assume that > 1.
a,(fﬁn =0 if n < L B+ +v4s —3)| (4.3)

where | N] denotes the largest integer not greater than

41.5=1

Fors = 1 formula (2.9) with (2.4) and (2.5) gives the follows. Wher{In < n
D@l ) = Zf((n +1.m), (n,m"); Dald, |

= 2(” - 1)an,m71 +4(n — 1)an,m + 2nan,m+1 + 2O‘n,m+2 (44)
and

by —Zg((n m), (n — 1, m"); Dal’y . o

= (m - 1)(0[/171,m + 2Olnfl,erl + anfl,erZ) (45)

where we have used the fact thgf) , = @, ,,. Hence, lemma 3.1 witho = 1 gives

,ﬁlfnl—ZZZan b (U= 1)t 1+422an pmw(l = Dt

=1 w>1 =1 w>1
+2 E E Olp—,m,wlQ i1 + 2 E E Ap—1,m,w w42 (46)
=1 w>1 =1 w>1

SIncezail;1 , = 0bylemma4.3. If we apply lemma 3.3, or more explicitly, lemma C.3 (given

in appendix C), we will obtain thed(n; 1)-BNR for O‘ﬁ,)n,l- In this procedure we perform
summations with respect th but do not calculate the summations forin (4.6). The
following formulae for double summations are available, which are derived in appendix D.

Note that, ,,.0 = O by definition.

Lemma 4.4.
() Forn >2,m > 1 andk =0 and 1,
n o) n—1
k+DY " > st Octwss == > ougmiDiyr0
=1 w=—1+1 =1
an,m-H |f t 2 [ 2 t
oy m—t + Up om—t |f t 2 ) < t— 1
+(n X ' ' 4.7
()i+y Ot fr<-1,m>—-r+1 (“.7)
0 otherwise.

(i)If m—¢t>0andr >1orm—1t <0andr <
1

n— |1]—1
(m)1
n—t.m.t (1 = — Uy e 4.8
E Qg .m, (D11 = sgNt) ; m 1] ok 4 pomim k2 (4.8)

Il
i
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and
n—1 |t]—1 (n)Z

n—tmt (1 = sgn¢ T AL A%, m—
;a Lm,t (D201 = sgN( ){ ; m— 1| —|—2k+2a m—t|+2k+2

-1

_Zz(|m_t|+2k+1)(”+l)1
lm—t|+2k+p)+3

Oln+1,|mr+2(k+p)+3} (4-9)
k=0 p=0

where sgi¥) = ¢/]t].

Double summations are performed and (4.6) is now written as

1
o )= (1= D1 = Dty 1 +201— D) {n—Z—m}aan

2
+(n -1 — 0 1
(n ){n 1}05 Lm+1

+2(Il - 1) {1 - } anfl,m+2 + 2O‘n,erl- (410)

m+ 2

It gives anA(n — 1,[m — 1, m + 1]; 2)-BNR for a . We find that, however, it can be
simplified as follows by the definition of the ballot number (3.2).

01(11,)11 1= =m>—2n—m+ 2y, — 2Mmoty 1. (4.12)
Since (3.6) holds, (4.5) is also simplified as

bh, = (m — Doty i1 (4.12)
and we have the compact expression

a® =m?—2n—m+ 2oy — (m+ Doy mt1 (4.13)

n,m

which means (i) of theorem 4.2. Although this final result (4.13) was already given in Inui
and Katori (1996), the derivation shown here is more transparent.

42.5 =2

In the same way as for (4.4) and (4.5), lemma 2.1(iii) gives

tgzr)nl)_ZZZf((”"‘l m),(n —k,m'); s — s)an o (4.14)
k=0 s'=0 m’
and
1 1-k

b2, = ZZZg((n m), (n —k—1m');s —s)al’ 4,4 (4.15)
k=0 s'=0 m’
for n > 2, where the functiong'(-) andg(-) are glven in table 1.
Lemma 3.1 is applied withg = 2, Whereazﬁmq1 = 0 by lemma 4.3. Using double
summation formulae such as lemma 4.4, we obtain the result
m+3

r(zzt)n = Z Conm (M) -1, (4.16)

m'=m—1

where the coefficientdC,, ,(n)} are given in table 2. Since these coefficients are
polynomials ofn of at most degree 4, theorem 4.2(ii) is concluded.
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Table 1. Functionsf () andg(-). Form = 1, g((n, m), (n’, m’); As) = 0 by definition.
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/

m fln+1m), (n,m');2) fn+1m), (n,m); 1) fln+1m), (n—1,m'):;2)
m—2>1 0 0 m—3
m—1>1 212 —51—m+5 2n —1) 2(2m = 5) + 28,2
m 2(n?2 — 51 —m +4) 4n —1) 2(3m —5) 4+ 48,1 + .2
m+1 M2 —n—-—m-5 2n 22m + 1) — 25,1
m+2 2(2n — 3) 2 m+11— 25,1
m+3 3 0 8
m+4 0 0 2
otherwise 0 0 0
g((n,m), (n —2,m"); 2)
m' g((m,m), (n —1,m’); 2) g((m,m), (n —1,m’); 1) (m>2)
m—1>1 0 0 Am — 2)
m 2m —1)(n — 3) m-—1 3(3m —5)
m+1 (m —1)(4n + 3m —12) 2(m —1) 2(8m — 11)
m+ 2 (m—-1)2n+m—4) m—1 2(7Tm — 8)
m+3 3(m —1)(m +4) 0 60m — 1)
m+4 0 0 m—1
otherwise 0 0 0

Table 2. Coefficients{C,, s (n)} of the BNR fora.,.

m'’ Cm,m’ (n)

m—1

m+1

%n4 —2n% — %(Zm — 7?4 (4m — 3)n — %(sz + 5m — 6)
m n* —4n® — 3(m — 2)n? 4+ 2(3m — 2)n — (4m? — Tm + 3)
In* —2n% — 3(@2m — Dn? + (4m + Dn — Bm? +m — 3) + 8,1

m+2 —m+DLn?+2n+@m+1)
m+3 %mz-i-gm

5. Correction terms

In our previous paper (Inui and Katori 1996), we discussed the relation between the
coefficients{a{’),} and the correction termig, ;}. The result is the following. Let

J 2_2n+4+m—k
a0 =3 (—1y (" ® 5.1
G =2 D ( o )m (5.1)
Then
]
dyy = al " (5.2)
m=1
As a corollary of theorem 3.5, we have the following.
Corollary 5.1.
(i) For anys > 0, {a{’),} has theA(n — s; 25)-BNR for each 1< m < n.
(ii)
n—I+1
dn,l - Z fk(l)(n)cn—l-‘rk (53)

k=1
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where{ /" (n)} are the polynomials of of at most degree (@ — 1).

In order to derive (ii), we used the formula

“ k+m-—1
Oym = (_1)’"_1(( )Cn+k—1 (54)
; 2k—1

which can be easily proved (Riordan 1979).
Owing to the factor(—1)*~* in (5.1), however, cancellation of terms occurs and the
degree of polynomialg!®) can be reduced. From (4.13) and (4.16), we obtain

n,m

a\?,
M = —20m — Dy m — (m + Dty i1

n,

= Qn,m

i . (5.5)
ar(u)n = (anl’l — bm + 5-— an,lam,l)an,m - 2mnan,m+l + Qm(m + 3)a}1,m+2
_Zanfl,m - (2 - am,l)anfl,erl

for 1 < m < n. There is further cancellation of terms, when we perform summation (5.2),
sincea\”), can be positive and negative as shown above. The final results for correction
terms, which can be regarded as the corollary of theorem 4.2, are very simple.

Corollary 5.2.
dn,l =Cy (56)
dn,2 = 2Cn —Cntl (57)
dn3z=—2(n+ e, + 2cp41. (5.8)

These representations for the correction terms using the Catalan numbers are conjectured
by Baxter and Guttmann (1988). Expressions (5.6) and (5.7) were first proved by Bousquet-
Mélou (1996) and then another derivation was given by the present authors (Inui and Katori
1996, see also, Katoet al 1997). The third one (5.8) was only announced in Inui and
Katori (1996), its derivation is first given here.

6. Concluding remarks

Jensen and Guttmann (1995) calculafzdas a power series @f up ton = 39. They found
that (i) the correction termg, ; can be written in the form

LI—1)/2] 24
n—m(l, k)
dyy = ; Al.k< ‘ )Cn—m(l,k) + ; By kChn—iyo4k (6.1)

for 3 <1 < 15 andn > [ — 4, wherem(l,k) = max0,l — 4 — 2k} and (ii) for
I < 15, the coefficientsA; , and B, are either integers or fractions with small (two or
five) denominators.

Of course, corollary 5.1(ii) is consistent with these observations. It should be noted,
however, that there is a gap between our theorems and their observations. In our
representation (5.3), the number of terms, which are needed to exprassing the Catalan
numbers, increases asincreases for a fixed. On the other hand, (6.1) states that they
have needed at most 2 4 terms ford,; independently of..

Now we want to introduce the following definition.
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Definition 6.1.Let C(n — I, K ; d) be the set of linear combinations of the Catalan numbers
{c} in the form

K
Z Je(m)en—i4k (6.2)
k=1

where{ fy(n)} are the polynomials of of at most degreé. If 8,;, e C(n—I1,K; h) Vn >1
for a givenl, we say thap,; has theC(n — I, K; d)-Catalan number representation (CNR).

Observation (6.1) implies thak, ; has theC(n — [ + 2,2/ — 4, (I — 1)/2])-CNR. Note
that theorem 4.2 suggests the following conjecture.

Conjecture 6.2For s > 1, {a{),} has theA(n —s + 1,[m — s + 1, m + 25 — 1]; 25)-BNR.

If it is proved, we can conclude tha},; has theC(n — 1 + 1, 3(/ — 1), 2( — 1))-CNR.

Further investigation will be needed concerning the cancellation of terms, which occurs
when we calculaté, ,, from {a{) } as shown in section 5.

Recently the extrapolation method has been extensively applied to many problems
(Onody and Neves 1992, Essaghal 1996, Katoriet al 1997, Jensen 1996, Jensen and
Guttmann 1996b). We believe that the present paper shows a way to justify this method
generally and to ensure the accuracy of series expansion data which give us fundamental

information for unsolved problems.
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Appendix A. Proof of lemma 2.2

By (2.3) and (2.4) f ((n2, m2), (n1, m1); As) is the number of bond configurations satisfying
many conditions. In this proof, we particularly concentrate on the condition about the
number of closed bonds; exacily, — n1) — (|C2| — C1|) + As bonds are closed. In order

to put emphasis on this condition, we write= (n, — n1) — (m2 — m1) + As and define

f(n2.m2), (n1,m1); ) = f((n2,m2), (n1, ma); As). (A1)
Consider asefy € Y, with |C1| = my, ¢(C1) = 1 and assume that, = {x1, x14+2, ..., x1}
with x] = x1 +2(my —1). Let V[SMZ](Cl) denote a trapeziurf(x, y) € Z?: x +y = even,
ny <y <ng x1— (y—n1) < x < x;+ (y —ny)}, which is a subset OV[E:MZ]. By using

the definition ofA, (A,, = B: w), we find thatUz, A,(A,, = C1; @) C V) ,.1(Cy).

We assume that amongclosed bonds’ bonds are iri/[glynzl(cl). Under this additional
condition, we consider the bonds which are included\/’tﬁll,nz](cl). The number of
configurations of these bonds, which satisfy all the conditions given in (2.3) and (2.4), is
given by f ((m1+(no—n1), my), (n1, m1); r'). Here we have used the fact m‘#l,nz](cl) is

equivalent toV,° E Since the number of choices to select other’ closed bonds

[m1,m1+(na—ny) 5
;rom tlhe set of bonds iV 1\ V2, (Cy) is (*"2"D"7") e obtain the following
ormula.

F(na,m), (1, ma);ry = 3 i

Iy
7 =Tmin

x f ((m1+ (n2 — n1), mp), (my, ma); r') (A.2)

- (2(n2 —ny)(ny — ml))
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where ryin is the possible minimum value of, which will be determined below. The
important point is thatf((ml + (n2 — n1), my), (m1, m1); r) depends on the height of the
trapeziumn, — n; but is independent of the absolute valuemgf Formula (A.2) states that,
if we regardf((ng, my), (n1, m1); r) as a polynomial of:; for fixed n, — ny, the degree is
at mostr — rmin.
Now the problem is reduced to determiningy, as a function ofAn = n, — n; and
Am = my — mj. The precise definition of,, is the following.
rmin(An, Am) = minimum number of the closed bondsdne B,, ,,, such that
Ap,(Apy = C1;0) = Co, |C1| = my, c(C1) =1, [Co| =mp,c(C2) =1
andc(A,(A,, =C;w)) =2 2Vne{n1+1,...,np—1}. (A.3)
First we consider; (An, Am) which is defined in a similar way to (A.3), but in which
the conditionc(4,(A,, = Ci;w)) = 2 Vn € {n1+ 1,...,np — 1} is replaced by
|A,(A,, = C1;0)| > 3 andc(A, (A, = Ci;w) =1Vn e {n1+1,...,np —1}. Some
consideration leads us to that,Afn > 2,

. An — Am if —An < Am < An
Fmin(An, Am) = { —2Am if Am < —An. (A4)
It is easy to find that
. An if —An < Am < An
rmin(An, Am) = i (An, Am) + { An—1 it Am < —An. (A.5)
We also find that
0 if Am=1
rmin(An =1, Am) =141 if Am=20 (A.6)
—2Am if Am < 0.
Sincer = An — Am + As, we obtain the results.
As — An if An>2and—An < Am < An
As+Am+1 if An >2andAm < —An
AL DN if An=1andAm =0or1 A7)
As+Am+1 if An=1andAm <0

which givesr — rmin < As. Therefore,f((n + 1, m), (n —k, m’); s —s’) is the polynomials
of n of at most degree — s’.

Forg((n,m), (n —k —1,m’); s — s"), we can perform the same procedure to evaluate
the degree with respect to In this casermin can be greater than (A.3), since the condition
¢(Cy) = lis replaced by:(C,) > 2 for g(-) as defined by (2.5). It follows that— rmi, can
be reduced. The highest degree is bounded from abouwe-by anyway. This completes
the proof. O

Appendix B. Proof of lemma 3.1

Assume that a double seri¢g, ,,} is defined forn > nop > 1 andm > 1. Let the value
D(B,.m) be I, for eachn, m. First we extend this series for < 0. We assume the
following asymmetry with respect ta;

IBn,m = _lgn,—m for m < 0. (Bl)
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We also assumé, ,, = —1I, _,, for m < 0 and have

D(Bum) = Lim forn > ng —00 <m < Q. (B.2)
The generating function fofg, ,,} is introduced as

\I/(x, y) = Z Z x”ym/gn,m' (83)

n=ng m=—00

If we regard (B.2) as a difference equation, it gives an equationfar, y),

W(x,y) =K@, )" W)+ 1(x, )] (B.4)
with
-
K(x,y) = R (B.5)
Vo) = Y 3" Biom (B.6)
I(x,y) = Z Z X"y Ly - (B.7)

In order to derive it, we have used (B.1), which gives thap = 0 and)_, x" (B, 1 +

an.l) =0.
First we notice that

1 -1
with

o0 o0
D(x,y) = Z Z X"y oty m (B.9)

n=1m=-—00

which is the generating function of the ballot numbers. This observation leads to

00 00 00 t
K(xv y)xn071qj(y) = Z Z X"ym ZanfnoJrl,t Zﬂno,mft+2kfl- (Blo)
=1 k=1

n=ng m=—00

Next we see that

28 2(n —1)
K = Ty . B.11
(x, y) ;m;wx y ((n_1)+m> (B.11)
This gives
K@ I,y = Y > x"y"L(n,m) (B.12)
n=npg+1lm=—0o0
with

B n—ng o0 2(n —ng — l)
L(n,m) = Z Z ((n Cmo— 1)+ m— w>Il+no—l.w

=1 w=—00
n—ng o0

- § an—no—l+l,m,wIH—no—l,w (813)
=1 w=1
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where the property, ., = —1,,, has been used. Comparing coefficients of terms with
x"y™ in (B.4), we obtain fom > ng

[’} t n—ng o0
,Bn,m = Zan—no+l,t Z ﬂno,m—t+2k—l + Z Zan—no—l+1,m,wD(lgl-&-no—l.w) (514)

=1 k=1 =1 w=1

where (B.2) was used.
Now we put a condition fofg, . };

Bum =0 for |m| > n. (B.15)
Under this condition and (B.1), the first term on the RHS of (B.14) becomes that of (3.8).

Appendix C. Proof of lemma 3.3

In the previous paper (Inui and Katori 1996), the following useful lemma was proved.
Lemma C.1Define

1
a(x):g{l—Zx—\/l—4x}. (C.1)
Then
a(x)" = Zan,mx” form > 1. (C.2)
n=1
Let a differential operatorD,, be
d
D, = xz—. (C-3)
0x
We see
Diax)" =Y (n)cty mx"* for k >0 (C.4)
n=1

where(n)o=1, )y =nn+1)...m+k—1) for k > 1. On the other hand, it is easy to

confirm that

m—y+1 00 2n

ax"T P (C.5)
1—ax)? —\nt+m—y

if m —y > 0. Therefore, the following identity holds.
Lemma C.2Form —y >0,k >0 ands > 1,

m—y+1
U)oy — Q)"
B, (x) = ml)xa(x)
o) n—1
2n—1—-1
= ( " : )a)kaz,a. (C.6)
= — m—1l-D+m—y
First we consider the cage= 0.
m+5—y+1
BO _ a(x)
y W= G
o0

a (x)m+87y+2k+1
0

xn

o
NgE

A, m+8—y+2k+1 (C-7)

3
1
AN
~
I
o



Ballot number representation of the DP probability 2991

in which we used (C.2) for the last equality. Thus we have

n—1 0o
2m—1-1)
2 ((n =D +m- V)al"s = D Cnmi—ya2iet. (C.8)

=1 k=0

Obtain an equation by changingto —y in (C.8) and subtract it from (C.8). By (3.1), we
have the identity

n—1 y—1
Zanfl,m,yal,é = Zan,'n+87y+2k+1' (Cg)
=1 k=0
Next we consider the case= 1. By (C.1) we have
ma(x)l71+1
D, M= C.10
a()" =3 BE (C.10)
Therefore, we obtain
m+8—y+2
BD(x) = Sa(x)n+i-r+
Y (1—a(x)??
o0 Sa(x)n1+6—y+2k+2
- IZ:(:) 1—a(x)?
> 1)
— D, (a(x m+8—y+2k+1
;m+8—y+2k+1 (@) )
= an : n,m+8—y+2k+1 (Cll)

:Om+5—y+2k+la

3
Il
iN

k

in which we used (C.4) for the last equality. Following the same procedure as for the case
k =0, we find

n—1 =t 8(n)1
Dty Drs =Y m+ 8 —y + 2k 4 10y 1
=1 k=0
Whenk = 2, using
a(x)m+2 a(x)m+2
- L, o C.13
va(x)" =m(m —1) 1-ax)?? " (1—a(x)?3 o
we obtain
o oo ) 2 §4+2k+1
5 _ D m—y+8+2k+
y () ;m—y+8+2k+l Ha) :
0o 00 5(7’” —yv +2k+ l) m—
22 v+ ay+ 2k + ) 4 2 Dr @)D, (C.14)

k=0 p=0

This gives an identity similar to (C.12).
Since (3.1) gives

Cnom,—k = —OQn m.k (C15)

the above identities are generalized as follows. Remarkathaty = 0 by (C.15).
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Lemma C.3Assumethat > 1. f m —y >0andy > 1orm—y <0andy < —1, then
n—1 lyl=1

Zanfl,m,yalﬁ = Sgr(y) Z Ay, \m—y|4+6+2k+1 (016)
=1 k=
n—1 |V\ 1
3(n)a
Up_imy(D1075s =S Oy Im— C.17
2 Lm,y (Do s = sgn(y) Z m— 46+ 2%+ 1 yl+84+2k+1 ( )
n—1 lyl=1
3(n)2
Uy imy(Doaj 5 =S Oy m—
2 L,y (D20t s gr(y){ ; m— |46+ 2+ 1% yls+2k+1
ly|-1
S(m—y|+2k+1D(n+ 1) }
- Z Z nt+1,|m—y|+8+2(k+p)+2 (C.18)
k=0 p>0 |m_V|+8+2(k+P)+2
where sgty) = y/ly|.
In general

k m m+k = 1
Dha(x)™ = a(x) ; Uralm) 3o

for k > 1. Here{U; ,(m)} are polynomials ofn, which are determined by the following
iteration
Uksrk41(m) = (m — k)Up 1 (m)
Ukr1,(m) = (m + k — 2 + 2)Up j—1(m) 4+ 2(1 — 2) Uy 1—2(m)
fork+2<1<2
Ury1,26+1-10m) = 22k — 1)Uy 2x—1(m)
with the conditionUy ;(m) = m§; 1. Using (C.19) successively, we have

k-1
B;“(x)zzzZ...ZR(@,m—y+5+2p0+1,m—y+a+2(po+p1)+2,

g=0po>0p120  p,>0

(C.19)

(C.20)

q
Lm—y+8+2) pitq+ 1)D’;—4(a(x>m‘y+‘”22f’op'*‘f“) (C.21)
i=0
where {R(x1, x2, ..., x442)} are rational functions ofUy, ;,(x1), Uk, 1, (x2), ..., Uk
(xg+2) With appropriate{k;, [;}'s.
It follows that

g+2:lg+2

k=1 y-1

BY ) — BN (x) = Zx””‘ Y3

g=0 po=0p1>0

.. Z R(m, Y, 61 po, P15 - -+ Pq)(”l + q)quan+q,m—y+6+22?:0 pi+q+1
Pq=0

(C.22)
with appropriate function§R}. On the other hand, lemma C.2 gives

o0 n—1
B (x) = BE (x) =Y "2 " aymy (Dkeus. (C.23)

Sinceaqm € .A(n' 0) forg >0 b)? (3.6), v:/e can conclude that

Zan Im y(l)kal 5§ = pr(n m,y, d; k)an P (C24)
p>0
Here f,(n; m, y,8, k) are the polynomials of: of at most degreé&, whose coefficients
depend on the values of, y, §. Thus, lemma 3.3 has been proved.
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Appendix D. Proof of lemma 4.4

Define

<I>+(x,y) Zzanmx y

n=1m=

B (D.1)
D (x,y) = Z Z QX" Y™
n=1m=—o0
lemma C.1 gives that
@ xy) =
1—a(x)y
(D.2)
— + -1 a(-x)
q)(x7y)=_q) (-xvy )Z_ ——.
y—a(x)
It is easy to confirm that
D, ®*(x, y) = K (x, »)[®*(x, ) F Dra(x)] (D.3)
whereK (x, y) andD, are defined as (B.5) and (C.3), respectively.
Let
D (x,y) =y O (x, ) + Y P (x, y). (D.4)
Then, (D.3) gives
1
Dy®(x,y) = K(x,y) [<I>z(x, )+ (y’ - y,) Dxa(X)} : (D.5)
We find thatK (x, y) has the following property.
DK (x,y) = (K(x, )% (D.6)
Only by using (D.5) and (D.6), can we prove the following identities.
Lemma D.1.For anyk > 0
1
(k+ DK (x, D@, (x, y) = Dy, (x, y) — (y’ - ) K (x, y)Dia(x). (D.7)
y
By definition and (B.11), we find that
Ko, DE®,(x, ) =y ) "ty Z Z 1t Dkl s (D.8)
n=1m=—o0 =1 w=—1+1
00 t—1
DY, (x, y) = Zx"*"“{ D Y Wkt + Z " <n>k+1am+,} (D.9)
n=1 m=—00 m=—r1+1
and
1 n—1
(y’ — y’) K (x, y)Dta(x) = Z Z xR ym Zan 1t (D101, (D.10)
n=2 m=—00

Lemma 4.4(i) is derived by comparing the coefﬂments of terms with" in (D.7).
Settingé = 1 in lemma C.3 gives lemma 4.4(ii).
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